

Energetische Sanierung im Eigenheim Dämmung, Heizung & Co

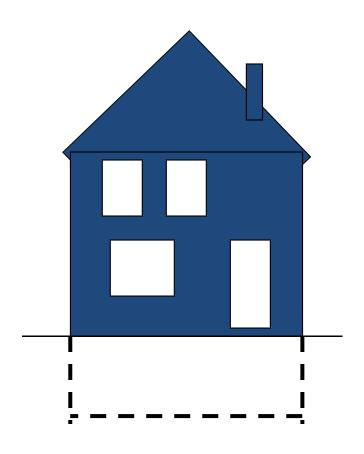
Klaus Michael

Energieberater Niedrig-Energie-Institut, Detmold

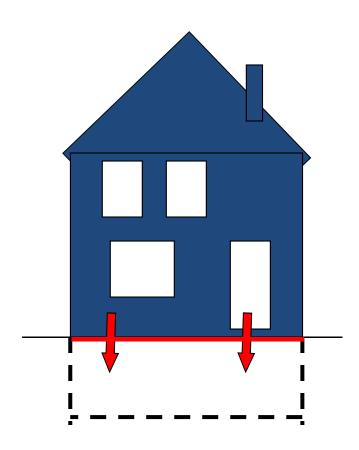
Zu meiner Person

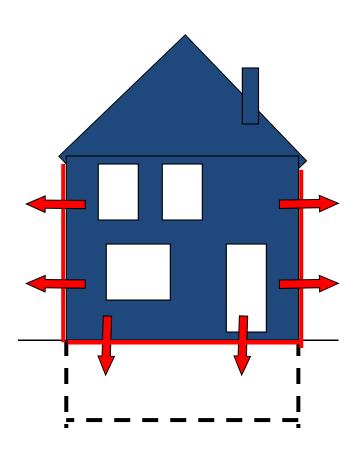
- 1985 Referent für kommunale Energiekonzepte im hessichen Wirtschaftsministerium
- 1989 Energiebeauftragter der Stadt Detmold
- 1994- Selbständiger Energieberater (NEI)
 - > 2500 Neubauten (NEH/PH)
 - > 5000 Altbausanierungen

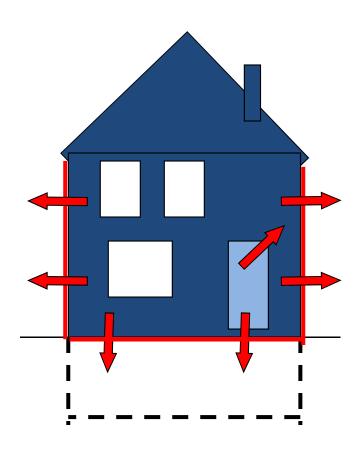
Anlass Ihres Besuchs?

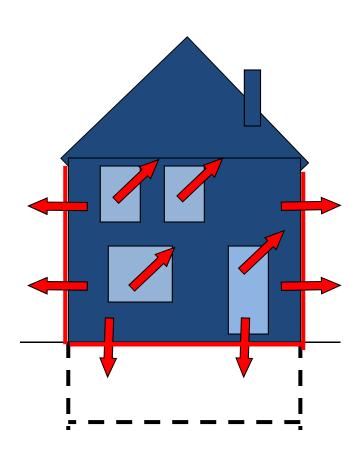

- Geplanter Umbau oder Sanierung?
- Neue Heizung nötig? Welche?
- Heizkosten senken?
- Beitrag zum Klimaschutz ?

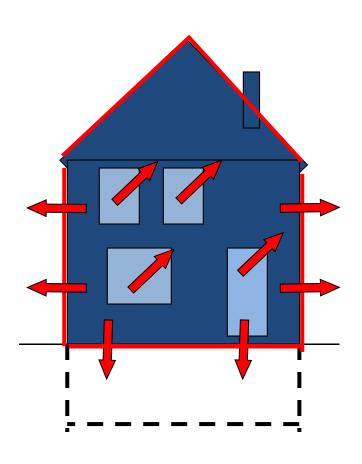
Aufbau meines Vortrags

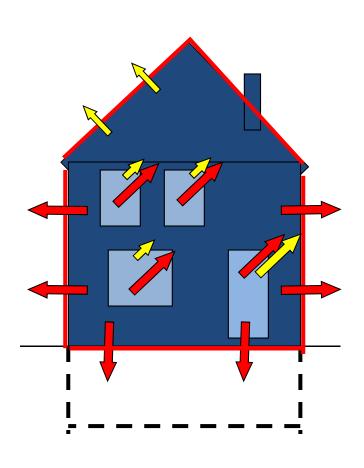

- 1. Bestandsaufnahme Gebäude und Heizung
- 2. Wo liegen welche Einsparpotenziale?
- 3. Was ist sowieso fällig oder wird gewünscht?
- 4. Womit in Zukunft heizen?
- 5. Erst dämmen oder erst neue Heizung?
- 6. Wieviel PV aufs Dach?

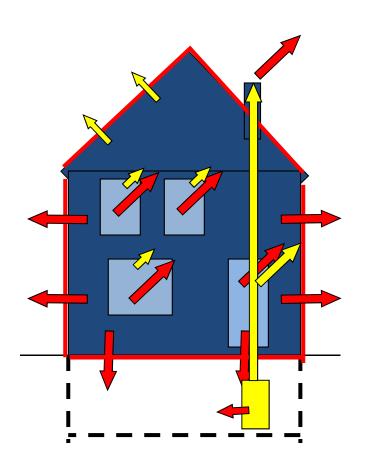

Von unten nach oben Alle Bauteile rund um die beheizte Zone dann Technik

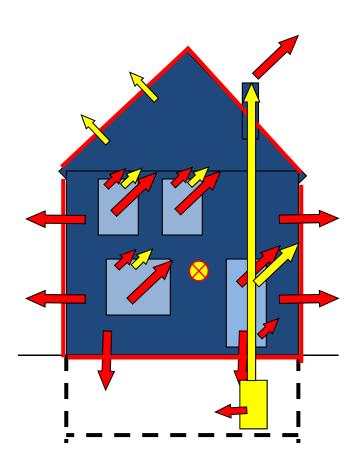

- Kellerbauteile


- Kellerbauteile
- Außenwände

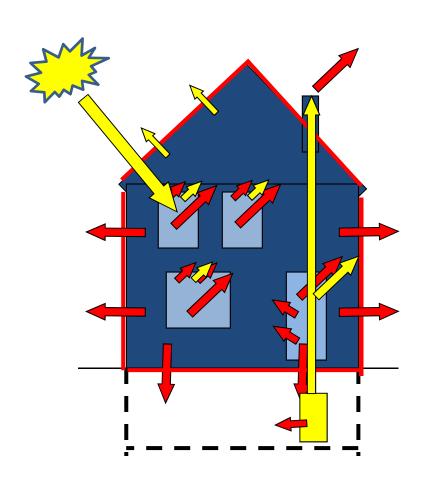

- Kellerbauteile
- Außenwände
- Außentüren


- Kellerbauteile
- Außenwände
- Außentüren
- Fenster


- Kellerbauteile
- Außenwände
- Außentüren
- Fenster
- Dachbauteile


- Kellerbauteile
- Außenwände
- Außentüren
- Fenster
- Dachbauteile
- Luftdichtheit

- Kellerbauteile
- Außenwände
- Außentüren
- Fenster
- Dachbauteile
- Luftdichtheit
- Heizung



- Kellerbauteile
- Außenwände
- Außentüren
- Fenster
- Dachbauteile
- Luftdichtheit
- Heizung
- Lüftung?

Energetische Gesamtqualität

Verluste über Gebäudehülle

- + Lüftungsverluste
- Solare Gewinne
- Innere Gewinne

= Heizwärmebedarf (kWh/a Wärme)

- + Warmwasserbedarf
- + Erzeugungsverluste


= Endenergiebedarf (kWh/a Brennstoff)

- x CO₂-Faktor des Brennstoffs
- = CO₂-Emission (kg/a)

absolut oder pro m² Wohnfläche

Energetische Qualitätsniveaus

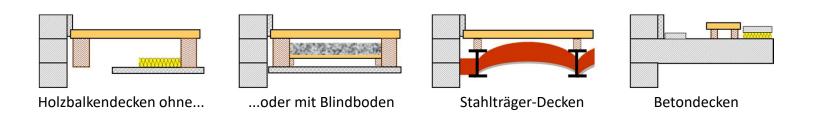
Analyse der Gebäudehülle

von unten nach oben...

U-Wert und Wärmeverluste

Maßeinheit für den Wärmedurchgang Einheit = W/m²K

= Watt Wärmestrom pro m² Bauteilfläche bei 1 Kelvin (= 1°C) Temperaturdifferenz

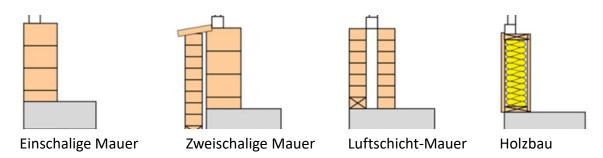

Werte zwischen 0,1 W/m²K (Super-Dachdämmung) und 5,1 W/m²K (Einfach-Verglasung)

Bei U=1,0 W/m²K und hiesigem Klima (84 kKh/a) fließen jährlich

- 84 kWh Wärme pro m² durch ein Bauteil Richtung Außenluft oder
- 42 kWh Wärme pro m² durch ein Bauteil Richtung Keller/Erde

Kellerdecken

Bodenplatten über Erdreich und Kellerdecken

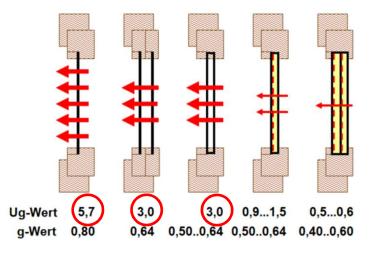

Α	U < 0,15 W/m ² K	Dämmschicht >25 cm
В	U < 0,30 W/m ² K	Dämmschicht 12-25 cm
С	U < 0,40 W/m ² K	Dämmschicht 8-11 cm
D	U < 0,50 W/m ² K	Dämmschicht 5 - 7 cm
E	U < 0,70 W/m ² K	Dämmschicht 3 - 4 cm oder Schüttung
F	U < 1,50 W/m ² K	z.B. Holzdecke mit Lehm/Schlacke/Sandfüllung
G	U > 1,50 W/m ² K	Beton- oder Holzdecke ohne Dämmung

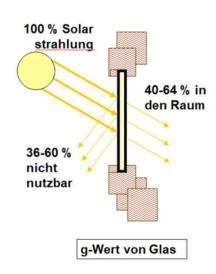
Handlungsbedarf, wenn schlechter als C

=> NEI-Video "Kellerdecken dämmen - ..." anschauen

Außenwände

Außenwände


Α	$U < 0,15 \text{ W/m}^2\text{K}$	Dämmschicht >25 cm
В	U < 0,25 W/m ² K	Dämmschicht 13-20 cm
С	$U < 0.40 \text{ W/m}^2\text{K}$	Mauerwerk mit 7 - 12 cm Dämmung
D	U < 0,50 W/m ² K	Mauerwerk mit 4 - 6 cm Dämmung
E	U < 0,70 W/m ² K	30/36,5 Mauerwerk aus schweren Ziegel
F	U < 1,50 W/m ² K	z.B. 30 cm KS ohne Dämmung oder Luftschichtmauerwerk
G	U > 1,50 W/m ² K	z.B. Beton oder schwerer Stein ohne Dämmschicht


Handlungsbedarf, wenn schlechter als D

=> NEI-Video "Außenwände dämmen - ..." anschauen

Fenster

_	en	-		-
	-11		-	•
	_			

Α	$Uw < 0.8 W/m^2K$	3-fach WS-Glas und wärmegedämmte Rahmen
В	Uw < 1,0 W/m ² K	3-fach-WS-Glas und nicht-gedämmte Rahmen
С	Uw < 1,5 W/m ² K	2-fach WS-Glas nicht-gedämmte Rahmen
D	$Uw < 3.0 W/m^2K$	2-fach Isolierglas und Holz- oder PVC-Rahmen oder Alurahmen RG1
E	$Uw < 4.0 W/m^2K$	2*fach-Verbund- / Kastenfenster oder 2-fach-Isoglas in Alurahmen RG2
F	$Uw < 5.0 W/m^2K$	1-fach-Glas in Holz- oder Kunststoffrahmen vor 1980
G	$Uw > 5.0 W/m^2K$	1-fach-Glas in nicht getrennten Alu-oder Stahlrahmen

Handlungsbedarf wenn schlechter als C (= kein WS-Glas)

=> NEI-Video "Neue Fenster im Altbau" anschauen

Glasqualitäts-Feuerzeugtest

Bei 2-fach-Glas sieht man vier Spiegelungen der Flamme.

Wenn alle gleich gelb:

= **Isolierglas** ohne Beschichtung üblich vor 1990. Ug > 2,6 W/m²K

Wenn zweite Spiegelung von innen mit Farbabweichung (rötlich, grünlich, bläulich):

= Wärmeschutzglas mit Infrarot-Reflex-Beschichtung üblich seit 1990. Ug < 1,5 W/m²K

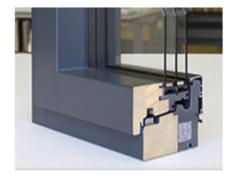
Fensterrahmen aus Holz

ungedämmt

doppelt

dicker

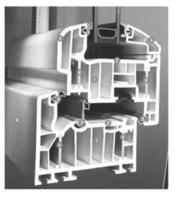
mit Kork gedämmt


Holz-PU-Holz

mit Balsa-Holz

geschlitzt

außen gedämmt


Fensterrahmen aus PVC

3-Kammer 1,4 W/m²K

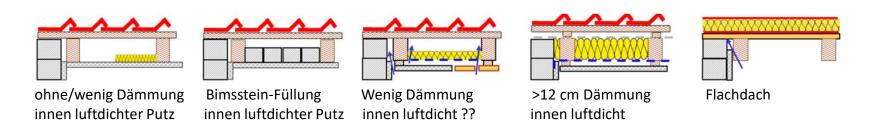
5-Kammer 1,3 W/m²K

7-Kammer 1,0 W/m²K

gedämmtes Profil 0,75-0,85 W/m²K

Fensterrahmen aus Alu

Nicht getrennt U_F ca. 6,0 W/m²K


1-2 cm getrennt U_F ca. 2.8 - 1.3 W/m 2 K

Alu 4-5 cm getrennt U_F ca. 0,8 W/m²K

Schrägdach

Dächer und oberste Decken

Α	$U < 0,14 \text{ W/m}^2\text{K}$	> 25 cm Dämmung
В	U < 0,25 W/m ² K	19-24 cm Dämmung
С	U < 0,40 W/m ² K	7-18 cm Dämmung
D	U < 0,50 W/m ² K	3- 6 cm Dämmung
Е	U < 1,00 W/m ² K	1- 2 cm Dämmung
F	U < 1,50 W/m ² K	z.B. Decke mit Lehm/Schlacke/Sandfüllung
G	$U > 2,00 \text{ W/m}^2\text{K}$	z.B. Dach oder Decke ohne Dämmschicht

Handlungsbedarf wenn schlechter als D

=> NEI-Video "Schrägdächer dämmen - ..." anschauen

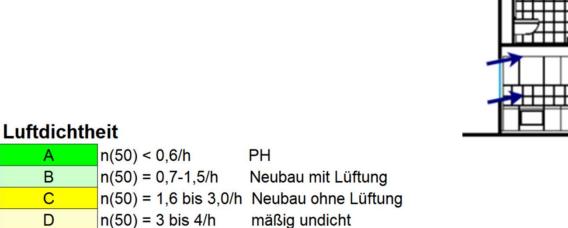
Oberste Decke

Dächer und oberste Decken

Α	$U < 0.14 \text{ W/m}^2\text{K}$	> 25 cm Dämmung
В	U < 0,25 W/m ² K	19-24 cm Dämmung
С	U < 0,40 W/m ² K	7-18 cm Dämmung
D	U < 0,50 W/m ² K	3- 6 cm Dämmung
E	U < 1,00 W/m ² K	1- 2 cm Dämmung
F	U < 1,50 W/m ² K	z.B. Decke mit Lehm/Schlacke/Sandfüllung
G	U > 2,00 W/m ² K	z.B. Dach oder Decke ohne Dämmschicht

Handlungsbedarf wenn schlechter als C

=> NEI-Video "Oberste Geschossdecken dämmen - ..." anschauen

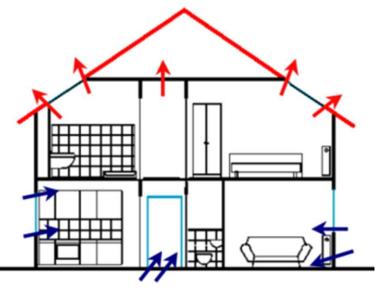


Luftdichtheit

n(50) = 4 bis 5/h

n(50) = 5 bis 6/h

n(50) = >6/h


stark undicht

extrem undicht

sehr stark undicht

Handlungsbedarf wenn schlechter als C

=> Sichtung, Leckageortung, Abdichtung

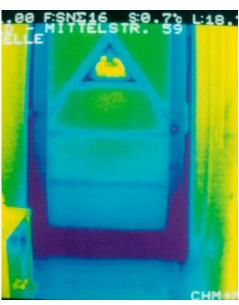
Häufige Leckagen

Kellertüren Haustüren

Fenster

Holzvertäfelungen

Installationen


Bodenluke

Luftdichtheit

Keller- und Haustüren

Dächer (Nebeltest)

Förderung von Maßnahmen an der Gebäudehülle

Beim selbst genutzten Wohneigentum (Haus oder ETW)
und Handwerkerausführung und EKSt-Pflicht

20 % Förderung über § 35c EStG ohne vorherigen Antrag

oder

bei allen Häusern bei wahlweise Handwerkerausführung oder Eigenleistung unabhängig von EKSt-Höhe

15 oder 20 % Förderung (ohne/mit integriertem Sanierungsfahrplan) über Bundesförderung für effiziente Gebäude (BEG) via BAFA oder KfW mit vorherigem Antrag und mit Begleitung durch Energie-Effizienz-Experten

- => siehe Handout
- => NEI-Video "Bundesförderung für Altbausanierung"

Heizung

Gebäudeheizungen verursachen etwa 1/3 der deutschen CO2-Emissionen. Heizungen mit hohen CO2-Emissionen sollen daher durch Heizungen mit niedrigen CO2-Emissionen ersetzt werden.

Heizung		<u>Beispiele</u>
Α	< 30 g CO ₂ /kWh	CO ₂ -arme Nah-/Fernwärme oder WP+Ökostrom oder Eigen-PV >80%
В	< 100 g CO ₂ /kWh	Mäßig CO ₂ -arme Nah-/Fernwärme oder WP mit Netzstrom
С	< 200 g CO ₂ /kWh	Gas-Brennwertkessel mit therm. Solaranlage zur Heizungsunterstützung
D	< 300 g CO ₂ /kWh	Gas-Brennwertkessel ohne therm. Solaranlage
E	< 400 g CO ₂ /kWh	Öl-Brennwertkessel oder Gas-NT-Kessel
F	< 500 g CO ₂ /kWh	Gas- oder Öl- oder Holz-Spezialkessel oder -Einzelöfen
G	> 500 g CO ₂ /kWh	Kohleheizung oder Kohleeinzelöfen

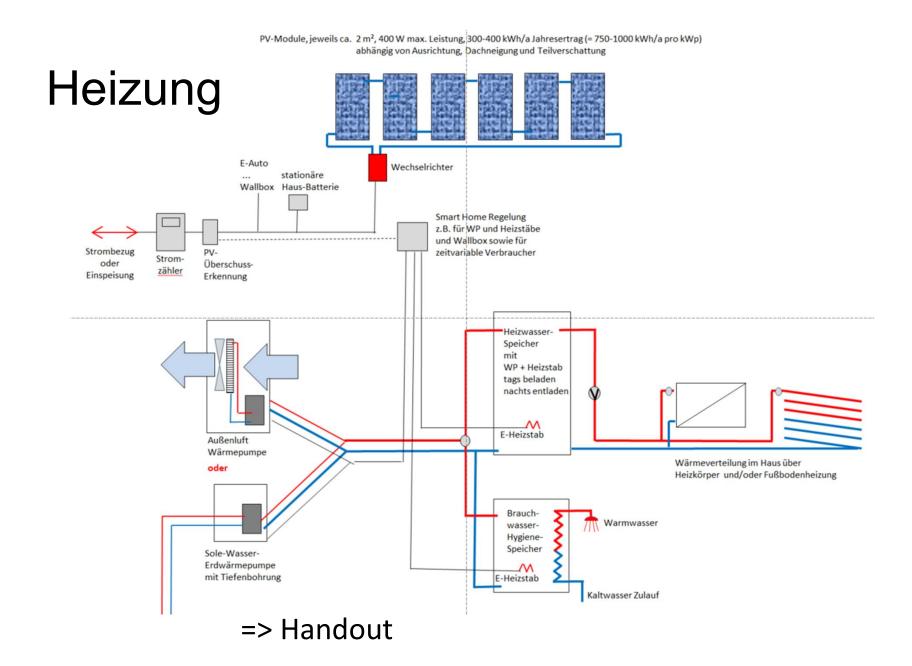
Handlungsbedarf wenn schlechter als C

=> NEI-Video "Weg von Öl und Gas - aber wie ?" anschauen

Heizung

"Kalte" oder "warme" Nah- oder Fernwärme

Alte Schätzchen Effizienz = F < 70%



Wärmepumpe am Altbau

Effizienz = A-B

Sole: 350-450 % Luft: 300-350 %

Neue Heizung

- wenn keine saubere Nahwärme dann Wärmepumpe
- dazu max. nötige Heizwassertemperatur mögl. niedrig
- wenn WP, dann abwägen, ob Luft- oder evtl. Sole-WP
- um Stromkosten zu minimieren => PV
- Kosten-minimiert durch smart grid ready mittels Steuerung, evtl. Batterie oder Wärmespeicher
- => NEI-Video "Weg von Öl und Gas aber wie ?" anschauen

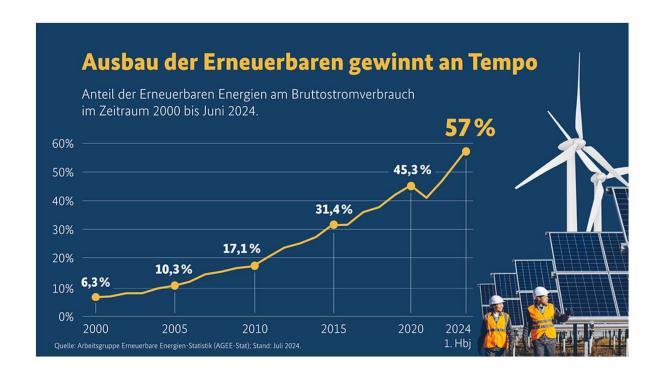
Förderung Heizungsumbau

Bundesförderung für effiziente Gebäude (BEG) via KfW

<u>mit</u> vorherigem Antrag und

<u>mit</u> Begleitung durch Energie-Effizienz-Experten oder Heizungsinstallateur

30 - 70 % der förderfähigen Kosten


- 30 % Grundförderung für jedes Haus
- + 20 % Beschleunigungsbonus (nur für selbst genutztes Wohneigentum)
- + 20-30% Einkommens-Bonus (nur für selbst genutztes Wohneigentum und nur, wenn das steuerpflichtige EK in den zwei zurück liegenden Steuerjahren unter 40.000 € lag

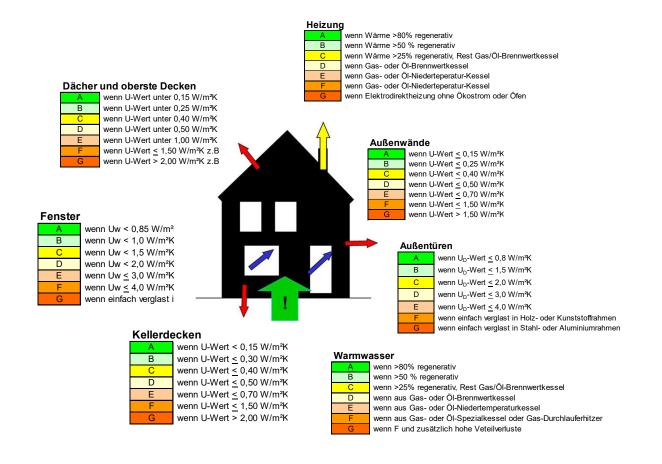
=> siehe Handout

Photovoltaik

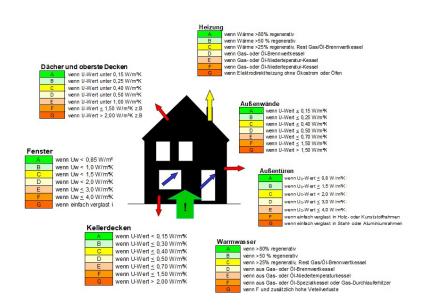
Wind, Sonne, Wasserkraft und Biomasse sind die CO2-armen Energieträger der Zukunft und ergänzen sich untereinander.

Photovoltaik

Mittelfristig sollten vorrangig alle geeigneten Dachflächen sowie geeignete Fassadenflächen für PV genutzt werden. Erst nachrangig wertvolle Freiflächen.



Wie wirtschaftlich vorgehen?

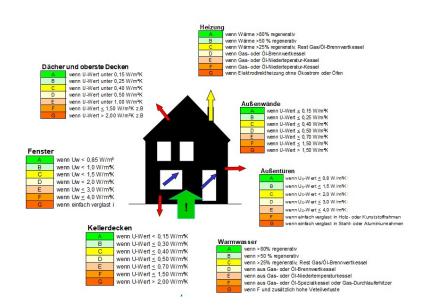


1. Qualität der Komponenten ermitteln

2. Wärmeverluste dieser Komponenten ermitteln

Beispiel

	Fläche	U-Wert	TDD	Wärmestrom	
<u>Bauteil</u>	m²	W/m²K	kKh/a	kWh/a	
KE-DE	70	* 2,2	* 42	= 6.468	
AW	130	* 1,0	* 84	=10.920	
Fenster	25	* 2,9	* 84	= 6.090	
Schrägdach	80	* 0,9	* 84	= 6.048	
Oberste Decke	e 40	* 1,2	* 84	= 4.032	
()					
Summe Transmissions-Wärmeverluste 33.000 kWh/a					


W/m²K = Watt pro m² und Kelvin (U-Wert-Einheit)

= Wärmedurchgang durch ein Bauteil pro Kelvin (=1°C) Temperaturdifferenz

TDD = Temperaturdifferenzdauer innen-außen in einer Heizperiode, abhängig von Klimazone und tats. Raumtemperatur in kKh/a = Kilokelvinstunden pro Jahr (1 K = 1°C Temp-Differenz)

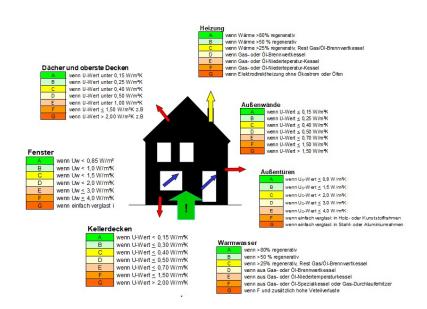
3. Einsparpotenziale an diesen Komponenten ermitteln

Beispiel

	F	Reduzierung		Reduzierung
	Fläche	U-Wert	TTD	Wärmestrom
<u>Bauteil</u>	m²	W/m²K	kKh/a	kWh/a
KE-DE	70	* -1,8	* 42	= -5.292
AW	130	* -0,8	* 84	= -8.736
Fenster	25	* -1,9	* 84	= -3.990
Schrägdach	80	* -0,7	* 84	= -4.704
Oberste Decke	e 40	* -1,0	* 84	= -3.360

Reduzierung Wärmeverlust gesamt

-27.000 kWh/a


W/m²K = Watt pro m² und Kelvin (U-Wert-Einheit)

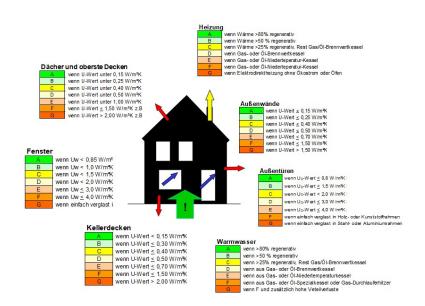
 Wärmedurchgang durch ein Bauteil pro Kelvin (=1°C) Temperaturdifferenz

TDD = Temperaturdifferenzdauer innen-außen in einer Heizperiode, abhängig von Klimazone und tats. Raumtemperatur in kKh/a = Kilokelvinstunden pro Jahr (1 K = 1°C Temp-Differenz)

4. Spezifische Kosten dieser Maßnahmen ermitteln

Beispiel

F	läche	Kosten	Kosten
<u>Maßnahme</u>	m²	EUR/m²	EUR gesamt
KE-DE 12 cm	70	* 40	= 2.800
AW 18 cm	130	* 170	= 22.100
Fenster 3-fach	22	* 350	= 7.700
Schrägdach 30 cm	80	* 350	= 28.000
KBD 30 cm*	40	* 40	= 1.600
Summe Kosten			= 62.100


EUR

abzgl. Förderung 15 - 45%

^{*} Kosten z.B. bei Eigenleistung

Kosten-Nutzen-Relation dieser Maßnahmen ermitteln

Beispiel

		Reduzierung	Nutz	Einspar-
	Kosten	Wärmestrom	dauer	Kosten
<u>Bauteil</u>	EUR	kWh/a	а	Ct/kWh
KE-DE	2.800	-5.292	30	1,76
AW	22.100	-8,736	30	8,43
Fenster 3-fach	7.700	-3.990	30	6,43
Schrägdach	28.000	-4.704	30	19,80
KBD	1.600	-3.660	30	<u>1,45</u>

Werte gelten für das auf vorigen Folien beschriebene Beispiel. ohne Anrechnung der Fördermittel

Vergleichen Sie die "Einsparkosten" mit ihren heutigen Heizkosten

Ein Gaspreis von z.B. 11 Ct/kWh entspricht bei einem Kesselwirkungsgrad von z.B. 80 % einem Wärmepreis von 13,7 Ct/kWh

6. Sanierung planen und umsetzen

- abhängig von Rentabilität, Dringlichkeit oder subjektiver Priorisierung
- ggf. mit Unterstützung eines Energieberaters
- wenn schon, dann sehr gut (= förderfähig)
- Fördermöglichkeiten rechtzeitig klären, Fristen wahren

Vielen Dank für Ihre Aufmerksamkeit

Weitere kostenlose Videos und Fachinformationen finden Sie auf https://nei-dt.de/fachinformationen/

Unser kostenpflichtiges Beratungsangebot finden sie auf https://nei-dt.de/dienstleistungen/

Energie-Effizienz-Experten in Ihrer Nähe finden Sie auf https://www.energie-effizienz-experten.de/

NEI

Niedrig-Energie-Institut Klaus Michael Friedrich-Richter-Str.1 32756 Detmold info@nei-dt.de www.NEI-DT.de